Origin and taxonomy of potato

Origin and taxonomy of potato

Origin

The cultivated potato traces its origin to the region around Lake Titicaca. Domestication occurred from a diploid species within the brevicaule group (in the broad sense; Spooner et al. 2005). More specifically, Solanum candolleanum represents a merger of closely related diploid taxa occurring north of Lake Titicaca, while S. brevicaule now represents a merged group of related species south of the lake.

Archaeological evidence shows that potato tubers were already used around 7000 years ago (Hawkes 1990).Today, most Latin American landraces are tetraploid and short-day adapted (group Andigenum). The diploid cultivated species Solanum phureja is well known for its lack of tuber dormancy (Ghislain et al. 2006).

In southern Chile, long-day-adapted landraces (group Chilotanum) are grown. Early European potato varieties were dominated by Andigenum germplasm, but after the introduction of Chilean potatoes in 1811, Chilotanum germplasm became predominant due to its long-day adaptation (Ames & Spooner 2008; Gutaker et al. 2019). Traits such as long-day adaptation, shallow eyes and oblong tubers are typical for Chilotanum and rare in Andigenum (Ghislain et al. 2009).

Taxonomy

Potato belongs to the family Solanaceae, genus Solanum, subgenus Potatoe, section Petota. Classic taxonomists (Ochoa, Hawkes, Bukasov) disagreed on various points (Spooner & van den Berg 1992), leading to long-standing inconsistencies.For detailed reviews, see Spooner & Hijmans (2001) and van den Berg & Groendijk-Wilders (2014).

Traditional classification

The historically most used framework is Hawkes (1990), recognising 232 species in 19 series.Examples of former taxonomic confusion include:

  • S. bukasovii vs. S. multidissectum
  • S. brachycarpum vs. S. iopetalumAs a result, genebanks may use different species names for the same accession.

Modern revisions

Spooner and colleagues revised potato taxonomy using morphological and molecular data. A selection of key changes:

  • S. palustre and S. brevidens merged under S. palustre (Contreras & Spooner 1999)
  • S. toralapanum → subspecies of S. megistacrolobum (Giannattasio & Spooner 1994a,b)
  • S. microdontum subsp. microdontum and subsp. gigantophyllum merged (van den Berg & Spooner 1992)
  • S. astleyi → subspecies of S. boliviense (Spooner et al. 1997)
  • S. canasense merged with S. bukasovii (Ochoa 1992), later included in S. candolleanum alongside 40 additional taxa (Spooner & Salas 2006; Spooner et al. 2014)
  • S. fendleri, S. leptosepalum, S. papita, S. polytrichon → merged into S. stoloniferum (Spooner et al. 2004)
  • S. tarijense merged with S. berthaultii (Spooner et al. 2007)
  • 32 taxa placed in a polymorphic brevicaule group and synonymised (Spooner et al. 2014)

Cultivated species revisions

Ghislain et al. (2006) demonstrated that S. phureja was taxonomically unstable: 31% of accessions at CIP were tetraploid rather than diploid, challenging the classic definition.Spooner et al. (2007) further showed that many S. phureja accessions cluster with tetraploids, leading to the merger of S. phureja and S. stenotomum with S. tuberosum subsp. andigena.

CGN’s own evaluation found all its phureja accessions to be diploid.

Some changes remain debated—for instance, merging S. megistacrolobum with S. boliviense (Jacobs et al. 2011). SNP data from Hardigan et al. (2015) show PI 265873 (former S. megistacrolobum) does not cluster with S. boliviense accessions, suggesting misclassification.

Current accepted taxonomy

The most up-to-date treatment is provided by:

  • Spooner et al. (2014) – reducing wild species from 225 → 107 and cultivated species from 7 → 4.
  • GRIN Taxonomy – lists current species and synonyms for Solanum.

Spooner et al. (2018) offer a reduced phylogenetic structure based on 131 diploid accessions.

Images and application in genebanks

Pictures are available at CGN at the accession level and a representative one is selected for the species levelCGN has not fully adopted all recent synonymisations (e.g. brevicaule and candolleanum groups), as genebanks traditionally apply nomenclatural changes conservatively to maintain stability.

Potato Taxonomists

Selected popular-science articles by Michael Jackson on potato taxonomy:

A list of potato taxonomic monographs is available.

References
  • Ames M. and D.M. Spooner (2008) DNA from herbarium specimens settles a controversy about origins of the European potato. Am J Bot 95:252–257.
  • Berg, R.G. van den and N. Groendijk-Wilders (2014) Chapter 2: Taxonomy. In: R. Navarre & M. Pavek (eds.) The Potato: Botany, Production and Uses. CABI: 12-28.
  • Berg, R.G. van den and D.M. Spooner (1992) A reexamination of infraspecific taxa of a wild potato, Solanum microdontum Bitter (Solanum sect. Petota: Solanaceae). Plant Systematics and Evolution 182: 239-252.  doi:10.1007/BF00939190
  • Contreras-M. A. & D.M. Spooner (1999) Revision of Solanum section Etuberosum (subgenus Potatoe). In: M. Nee, D.E. Symon, J.P. Jessop (eds.). Solanaceae IV: taxonomy, chemistry, evolution. pp. 227-245. Royal Botanic Gardens, Kew.
  • Ghislain, M.,  D. Andrade, F. Rodríguez, R.J. Hijmans and D.M. Spooner (2006) Genetic analysis of the cultivated potato Solanum tuberosum L. Phureja Group using RAPDs and nuclear SSRs. Theor Appl Genet 113:1515–1527. doi:10.1007/s00122-006-0399-7
  • Ghislain, M., J. Núñez, M. del Rosario Herrera and D.M. Spooner (2009) The single Andigenum origin of Neo-Tuberosum potato materials is not supported by microsatellite and plastid marker analyses. Theor Appl Genet 118:963–969. doi:10.1007/s00122-008-0953-6
  • Giannattasio, R. & D.M. Spooner (1994a) A reexamination of species boundaries between Solanum megistacrolobum and S. toralapanum (Solanum sect. Petota, series Megistacroloba): morphological data. Systematic Botany 19: 89-105.
  • Giannattasio, R. & D.M. Spooner (1994b) A reexamination of species boundaries and hypotheses of hybridization concerning Solanum megistacrolobum and S. toralapanum (Solanum sect. Petota, series Megistacroloba): molecular data. Systematic Botany 19: 106-115.
  • Gutaker R.M., C.L. Weiß, D. Ellis, N.L. Anglin, S. Knapp, J.L. Fernández-Alonso, S. Prat and H.A. Burbano (2019) The origins and adaptation of European potatoes reconstructed from historical genomes. Nat. Ecol. Evol. 1093–1101. doi:10.1038/s41559-019-0921-3
  • Hardigan, M.A., J. Bamberg, C.R. Buell and D.S. Douches (2015) Taxonomy and genetic differentiation among wild and cultivated germplasm of Solanum sect. Petota. Plant Genome 8(1):1-16.
  • Hawkes, J.G. (1990) The Potato: evolution, biodiversity & genetic resources. Belhaven Press London. 259 pp.
  • Jacobs, M.M.J., M.J.M. Smulders, R.G. van den Berg and B. Vosman (2011) What’s in a name; Genetic structure in Solanum section Petota studied using population-genetic tools. BMC Evolutionary Biology 11:42 . doi:10.1186/1471-2148-11-42
  • Ochoa, C.M. (1992). New synonyms in the tuber-bearing Solanum. Phytologia 73: 166–168.
  • Spooner, D.M. and R.G. van den Berg (1992) An analysis of recent taxonomic concepts in wild potatoes (Solanum sect. Petota). Genetic Resources and Crop Evolution 39: 23-37. doi:10.1007/BF00052651
  • Spooner, D.M., R.G. van den Berg, A. Rodríguez, J. Bamberg, R.J. Hijmans & S.I. Lara Cabrera, 2004. Wild potatoes (Solanum section Petota; Solanaceae) of North and Central America. Systematic Botany Monographs volume 68. 209 pp.
  • Spooner, D.M., D. Fajardo & G.J. Bryan (2007). Species limits of Solanum berthaultii Hawkes and S. tarijense Hawkes and the implications for species boundaries in Solanum sect. Petota. Taxon 56: 987-999.
  • Spooner, D.M., M. Ghislain, R. Simon, S.H. Jansky and T. Gavrilenko (2014) Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot. Rev. 80:283-383. doi:10.1007/s12229-014-9146-y
  • Spooner, D.M. and R.J. Hijmans (2001) Potato Systematics and Germplasm Collecting, 1989-2000. Amer J Potato Res 78:237–268.
  • Spooner, D.M., K. McLean, G. Ramsay, R. Waugh and G.J. Bryan (2005) A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. PNAS 102:14694-14699. doi:10.1073/pnas.0507400102
  • Spooner, D.M., J. Núñez, G. Trujillo, M. del Rosario Herrera, F. Guzmán and M. Ghislain (2007) Extensive SSR genotyping of potato landraces supports a major revaluation of their gene pool structure and classification. Proc Natl Acad Sci USA 104:19398-19403.
  • Spooner, D.M., H. Ruess, C.I. Arbizu, F. Rodríguez and C. Solís-Lemus (2018) Greatly reduced phylogenetic structure in the cultivated potato clade (Solanum sect. Petota pro parte). Am. J. of Botany 0(0): 1–11. doi:10.1002/ajb2.1008
  • Spooner, D.M. and A. Salas (2006) Structure, Biosystematics and Genetic Resources. In:  J. Gopal and S. M. P. Khurana (eds) Handbook of potato production, improvement, and post-harvest management. Binghampton, New York: Haworth’s Press, Inc., pp 1–39. doi:10.1300/5776_01
  • Spooner, D.M., M.L. Ugarte and P.W. Skroch (1997) Species boundaries and interrelationships of two closely related sympatric diploid wild potato species, Solanum astleyi and S. boliviense, based on RAPDs. Theor. Appl. Genet. 95: 764-771. doi:10.1007/s001220050623
Share:
Origin and taxonomy of potato | PGR Portal Potato